
Department of Philosophy -Utrecht University

A tractable algorithm
for the wellfounded model

Catholijn M. Jonker
Gerard R. Renardel de Lavalette

Department of Philosophy
Logic Group University of Utrecht
Preprint Series

a v v
Heidelber laan 8p

Q
g

No. 74 rs_ ..y 3584 CS Utrecht
The NetherlandsFebruary

A tractable algorithm for the wellfounded model

Catholijn M. Jonker
University of Utrecht, Department of Philosophy

Gerard R. Renardel de Lavalette
University of Groningen, Department of Computing Science

January 16, 1992

Abstract

In the area of general logic programming (negated atoms allowed in the bodies of rules) and reason

maintenance systems, the wellfounded model (first defined by Van Gelder, Ross and Schlipf in

1988) is generally considered to be the declarative semantics of the program. In this paper we
present the concise mathematical development of a quadratic-time algorithm for the wellfounded

model of propositional general logic programs. This algorithm has essentially been developed by

Witteveen in 1990, based on ideas and material by Goodwin (1982).

1. Introduction

For logic programs without negation the declarative semantics is clear: only those propositions
which have to be true are true, anything else is false. This is the minimal model semantics.
Since these programs have only limited expressive power, extending the language of logic
programs is useful. Logic programs where negated atoms in the bodies of rules are allowed, are
called general logic programs (see e.g. [L87]). The minimal model semantics is not acceptable
here, since the truth of a proposition may depend upon the falsity of others. The principle of
negation as failure is used to obtain the falsity of atoms.
Several semantics have been proposed for general logic programs (see [PP90], [J91]),
culminating in the stable ([GL88]) and the wellfounded ([GRS88]) semantics. The stable
semantics in [GL88] was originally a. two-valued semantics (truth values t and f), but it had the
drawback that it was not universal (not all programs have a two-valued stable model).
Therefore, this semantics was generalized to a three-valued stable semantics (see [PP90]): the
third truth value is u (undefined or unknown). The stable semantics still has two more
drawbacks:
- it is not unique (some programs have more than one stable model);
- finding a stable model is NP-hard (see [E89]).
The wellfounded semantics is unique and universal (and in general three-valued). If, moreover,
the wellfounded model for a particular program is total (i.e. uses only the values t and f), then
this model is also the unique two-valued stable model ([GRS88]). The analogy between the
stable and the wellfounded semantics carries even further: the wellfounded model is the least
three-valued stable model (see [P90], [W90]). Least here refers to the least amount of
information, based on the truth value ordering t > u < f.
Informally, the difference between the stable and the wellfounded semantics can be described as
follows. In a stable model, there is in general not a specific reason for an atom to be false; in the

1

wellfounded model, however, an atom is only false if there can never be a reason to make it
true. This is the way negation as failure works in the wellfounded model. In both models, an
atom is only true if there is a reason for it.
We give an example, based on the general logic program

-a -*b
-b -*a

The stable models are (a- t, b H f 1, (al- f, b H t j and { a,b H- u 1; the last model is also
the wellfounded model.

The definition of the wellfounded model (see section 4) is in terms of a fixpoint of a monotonic
operator which is defined using a union of subsets of the collection of atoms, called the greatest
unfounded set (GUS). As a consequence, the naive implementation of the definition leads to an
algorithm with exponential time complexity (given the size of the program), since all subsets
have to be tested for inclusion in GUS. A slightly less naive approach - trying to determine
membership of GUS pointwise - unfortunately does not work.
In [W90] Witteveen presents a quadratic-time algorithm for the wellfounded model. His work
is based on an algorithm by Goodwin (see [G82]) in which the notion of wellfounded model is
implicitly present (six years before the definition in [GRS88]), albeit restricted to the
propositional case (as is Witteveen's algorithm). Witteveen proves that his algorithm yields the
minimal three-valued stable model; T. Przymusinski proved in [P90] this model to be equal to
his version of the wellfounded model, stating the equivalence to the original definition in
[GRS88] without proof in [P89, Theorem 3.2]. [J91] contains our direct, but rather
complicated proof that Witteveen's algorithm yields the wellfounded model. The present paper
contains a more polished proof, based on an abstract formulation of the concepts involved.

2. Preliminaries

In this section we introduce our notation. The main orderd sets to be used here are presented in
a table; explanation follows in the Remarks.

symbol description definition variables ordering

N atoms (some finite set of atoms) a,b,c trivial
T truth values {u,t,f,o} x,y,z u < t,f < o
I interpretations N -* T I inherited
J justifications { J : I -) I I J monotonic } J inherited
B clause bodies p(Nx -N) a &-(3 c
C clauses B x N a&- J3 -4 c inherited
C S clause sets (C) S c
MCS minimal clause sets d'Ji(c) S (see below)

2.1 Remarks

2

1. X x Y and X -* Y inherit their order from X and Y in the usual way:
for z,z' E XxY, z = <x,y>, z' = <x',y'> we have z <_ z' iff (x <_ x' and y <_ y');
for f,g r= X --* Y we have f<_ g iff VxE X(fx <_ gx).

2. For X an ondered set, p (X) is the collection of al subsets of incomparable elements of X,
i.e. pi(X) _ {Y c X I b'yy'E Y(y<_y' -3 y=y')}. The ordering on pi(X) is defined by

A <_ B iff VxE A aye B (x<_y).

3. We write --N for { -a I a E NJ. p,q range over elements of Nu -N.

4. The names of the truth values abbreviate undefined, true, false, overdefined. In fact, taking
only the consistent truth values t, f, u would suffice; o is only added for reasons of symmetry
and elegance, e.g. to make O (sup) and O (inf) in 2.2 total.

5. For the purely mathematical part of the story only N, T, I, J would suffice. The other sets
are introduced in order to formulate matters in the usual style of logic programming involving
clauses. E.g. the elements of C are assumed to represent clauses directly, which is expressed
by the choice of variables ranging over arbitrary elements (column 3).

2.2 Additional definitions

We have the following unary operations on T:

x -,x cx

u u t u u u t u
t f u t t u t u
f t u t u f t u
o o u t t f t u

As binary operations on T we have 4 (inf), 4 (sup) and & (logical and). O (inf) and O+
(sup) are defined as usual; & is defined as the unique symmetric extension of conjunction on
{t,f} over which O and (D distribute, i.e.

(xO+y)&z = (x&z)O+(y&z)
(xOy)&z = (x&z)O(y&z).

O, O+ and & are also used as prefix operators on sets of truth values, in the usual way, e.g.
& { x,y,z } = x&y&z.

All these operations are lifted to I as usual: e.g. (--iI)a = --,(Ia) for aE N.
We put Tc = {t,f,u} (the consistent values) and T+ {t,u} (the positive values).
We list some properties:

(1) +-,x = -,-x
(2) x=+x®-x
(3) c(x O+ y) = cx O cy

3

(4) Ixl =ccx
(5) IxO+yl = IxI $ lyl

(6) x©cx=lxlOcx=u
(7) x _< y (+x <_ +y and -x <_ -y)

If, moreover, x,y E' T+, then

(8) Ixl = x

(9) x__<y x0cy=u
(10) ccx = x
(11) xO+cx=t

(1) - (11) can all be lifted in an obvious way to interpretations, reading I for x, I' for y, T
for t and U for u. We also put

Ic=N -* Tc
I+N ---) T+
J+ = J n (I -> I+)

I is consistent with I' iff I$I'E Ic; I is a consistent extension of I (I c>_ I') iff I E Ic and I ? I.
For I,I'E Ic we have

(12) IO+I'E Ic I® U.

We shall use the fixpoint operator

fix J -4 I
fix(J) = {Jn(ka.u) I n r= co} (the least fixpoint of J)

with the properties

(13) J(fix(J)) = fix(J);
(14) if J(I) <_ I then fix(J) <_ I.

Here we used that N is finite, so the fixpoint of monotonic J is reached in finitely many steps.

3. Some isomorphisms

It is evident that I and B are isomorphic, by t : B -* I and a : I -4 B defined by

t((x&-f3)(x) = @Qt I a (=- a} u {f I bE (3})
6(I) = ai &-Dj where

al = [x I I(x) >_ t j
Qi={xII(x) _ f}.

With this isomorphism in mind, we introduce the abbreviation

4

*

<=> --T =

ED

I-4 c =def aI&-(31-4c.

By appropriate restrictions of t and a, I+ andp (N) are isomorphic. We let A range over
elements of I+, sometimes considered as subsets of N.

Now we shall show that J+ and MCS are isomorphic. Define j : CS -4 J+ by

j(S)(I)c = t if 3I'SI- (I'-ac E S)
= u otherwise.

It is clear that j is monotonic: if S <_ S' and j(S)(I)c = t then also j(S')(I)c = t; this holds for
all I E I and c e N, so j(S) <_ j(S').
j has a right inverse, for e.g.

if S = {I - c I J(I)c = t} then j(S) = J

but this is in some sense not optimal: S is in general not minimal. But we do have

3.1. Lemma j is an isomorphism between J+ and MCS.
Proof: Define cs : J+ -a MCS by:

cs(J) &`d-I'<IJ(I')c=u}

We claim:
1. cs(J) E MCS
2. J = j(cs(J)) for all JEJ+
3. S = cs(j(S)) for all S E MCS
4. J_< J' cs(J) <_ cs(J')
This is proved as follows:
1. Directly from the definition of cs and - MCS.
2. This follows from VIc (J(I)c. = t a 3I'SI (J(I')c = t and VI"<I' J(I")c = u)) and this is
true. To see this, use (*): given I, there are only finitely many I' <_ I.
3. Using S E MCS, this comes down to VIc (I-c E S (3I':5I (I'--n E S) and VI"<I
(I"-ac o S))), which follows with (*).
4. Analogously.

We introduce a validity relation. First we extend I : N --> T to I : B ---> T by

I(a&-f3) = &{Ip I pE a&-f3}

Now we define

: IC X (B u C u CS u I u J+), defined by
I
I

a&- p
a&-[3 -4 c

iff 1((X&- f 3) ?t
iff (I (X&- 3= Ic=t)

_

<-*

t-->

=

5

I S iff `d((X&-P -4 c)E S (I I= (X&-l3 - c)
I I' iff I 6(I')
ICJ iff I cs(J)

3.2. Lemma
i) If I,I' E Ic then I I' iff I'<_ I
ii) If I E Ic, J E J+, then I J iff J(I) <_ I
The proof of this lemma is easy and left to the reader.

A consequence of (ii) is: fix(J) is the least interpretation satisfying J, i.e. fix(J) = J, and if
b-- J then fix(J) <_ I.

Using the isomorphisms above, we define the immediate consequence of interpretation I with
respect to the clause set S by

GO(S)I)={c I I= a&-3 for some a&-(3-4 c in S}.

4. Negation as failure via unfounded sets

As has been mentioned in the Introduction, the wellfounded semantics embodies negation as
failure. Failure is captured by unfounded subsets of N, (modulo an interpretation I and a
justification J).

First we define J*: it maps a positive interpretation I E I+ to the collection of all immediate J-
consequences of consistent extensions of I.

4. 1. Definition

. J+ -4 J+
J*(I) = EB {J(I') I I' c>_ I}.

It is clear that J* is antimonotonic, for if I <_ I', then {I" 1 I" c>_ I} {I" I I" c>_ I'), so
(monotonicity of J and ED) ® { J(I") I I" c_ 1) ® { J(I") I I" c_ I').
Translating this to clauses we get:

G(j(S)*I) = {c I for some (x&-D---> c in S we have t}.

4.2. Definition (unfoundedness)
unf: I+xIxJ+
unf(A,I,J) -,A O+ J*(I (D -.A) E Ic.

In words: -,A is consistent with all immediate J-consequences of conservative extensions of
I+O-,A. Formulated in terms of clauses:

`dc A b'a&~f3-4 c E S (Ana # 0 or -a$Io Ic or an(3# 0 or I((X&~(3)>_ f).

So, assuming

6

=
C

*

;;
>_

<=*

-,A 4 I E Ic(OK if Ac (c I Ic = u}) and
`da&-13--* c E S (an(3 # 0),

we get the original definition (see [GRS88], [J91]):

`dcE AVa&-f3-4 c E S (An(x # 0 or I(a&-{3)>_ f).

Definition 4.2 only gives a way to check whether a set is unfounded, this check involves the
justification (J) and takes linear time in the size of the program (see [GRS88}). There is
however not a constructive definition of unfounded sets; i.e. no way is given how an
unfounded set can be found.

4.3. Lemma
i) unf is monotonic in its second argument;

ii) in its first argument, unf is preserved under O+, i.e.
VAE X unf(A,I,J) unf(OX,I,J) (X c I+).

Proof:
(i) Let I _< I' and assume unf(A,I,J), i.e. A 4 J* (I O A) = U; by I <_ I' and the
antimonotonicity of J* we have J*(I O+ -,A) >_ J*(I' © -.-,A), so A ® J*(I' OE -,A) = U, i.e.
unf(A,I',J).
(ii) unf((@X,I,J)

a [definition of unf]
OX 0 J*(I O+ -OO X) = U

[property of 0]
VAEX A©J*(Im-DX)=U

[4.4: J* is antimonotonic]
VAE X A 0 J*(I O+ --,A) = U

[definition of unf]
VAE X unf(A,I,J).

4.4. Definition (greatest unfounded subset)
Gus:IxJ+--jI+
Gus(I,J) = 0 { AE I+ I unf(A,I,J) }

Since definition 4.2 is not constructive, neither is this definition for Gus. The naive
implementation of the definition leads to an algorithm with exponential time complexity (given
the size of the program), since all subsets of N have to be tested for membership, as pointwise
determination of membership of Gus is impossible.

4.5. Lemma
i) Gus is monotonic in its first argument;

ii) unf(Gus(I,J),I,J), i.e. Gus(I,J) 4 J*(I O+ -,Gus(I,J)) = U;
iii) J(I) O Gus(I,J) = U
Proof: (i) follows directly from 4.7.(i).
(ii) Follows from 4.7.(ii) and the definition of Gus.

7

=*

,

t=>

<-*

(iii) J(I) A Gus(I) = J(I) ©O{AE I+ 1 A O J*(I $ -,A) = U} [definition of Gus and unfl
= Q+ { J(I) O A I A (9 J* (I $ -,A) = U) [® distributes over (D]
= U [J(I)<_ J(I$ -,A) <_ J*(I(D -,A)]

Now we can define the wellfounded model wf(J) of J as the least fixpoint of the operator
JWf:I-4I
JWf(I) = J(I) O+ -iGus(I,J)

Now wf(J) = fix(JWf) is the smallest I satisfying
+I = J(I) and -I = Gus(I,J);

this last property comes down to
unf(A,I,J) = --,A <_ I,

i.e. if A # 0 and A <_ uI then there is a consistent extension I' of Im --,A and an A with Aa =
J(I)a = t, so I cannot be extended with -,A.

5. A tractable approach

When trying to find an efficient algorithm for wf(J), one hits upon the problem of computing
Gus(I,J). Direct implementation of the definition of Gus leads to exponential-time behavior: all
subsets of N (coded as elements A of I+) have to be tested for unf(A,I,J). As unf is not
antimonotonic in its first argument (i.e. we do not have unf(A,I,J) and A'<A unf(A',I,J)), it
is not possible to define Gus(I,J) pointwise by {a I unf(t{a},I,J)}, which would have resulted
in a linear-time algorithm for Gus.

Witteveen presents in [W90] a linear-time algorithm for Gus(I,J) which is based on ideas by
Goodwin ([G82]). It computes the complement of Gus as the least fixpoint of a monotonic
operator which we call W (see 5. 1). Using W, a quadratic-time algorithm is obtained in [W90]
for the computation of wf(J) (see 5.5). In this section, we present our formulation of
Witteveen's approach and derive the necessary properties.-

5.1. Definition
W:IxJ+-*J+
W(I,J)(A) = J*(I O+ -c(I(DA)) 4 cI

In terms of clauses:
cs(W(I,j(S))) {aE (x I Ia=u} -4 c I a&-43-> c E S with Ic=u and I((x&-43)< t).

5.2. Lemma
i) W(I,J): I -4 I+ is monotonic;

ii) W(I,J)(A) <_ A unf(c(I(BA),I,J).
Proof: (i) Follows from the antimonotonicity of J* and c.

=*

t=:

8

(ii) W(I,J)(A) S A
[definition of W]

J*(I (D -,c(IOA)) ® cI <_ A
t:-* [2.2. (9)]
J*(I (D -,c(IOA)) ® cI ® cA = Ua [2.2. (3)]
J*(I O -,c(I(DA)) ® c(I©A) = U

[definition of unf]
unf(c(I(DA),I,J).

5.3. Lemma fix(W(I,J)) = c(I (D Gus(I,J)).
Proof: First we show >_, then <_. We write F for fix(W(I,J)), G for Gus(I,J).
>: F__>c(I©G)

[2.2. (3),(9)]
G _ c(IED F)

[definition of Gus]
urif(c(I(DF),I,J)

[lemma 5.2.(ii)]
W(I,J)(F) <_ F
t-* [property of fix]
true.

<_: F<_ c(I (D G)
[property of fix]

W(I,J)(c(I (D G)) <_ c(I ® G)
[lemma 5.2.(ii)]

unf(G,I,J)
a [lemma 4.5.(ii)]
true.

So it seems that Gus(I,J) can be determined via its complement in N. We make this more
precise:

5.4. Corollary 111 0 Gus(I,J) = U = Gus(I,J) = c(I O fix(W(I,J)))
Proof: c(I O+fix(W(I,J)))

[lemma 5.3]
c(I O+ c(I (D Gus(I,J)))

[2.2. (3),(5),(8); Gus(I,J) E I+l
cI ® (111 O+ Gus(I,J))

_ [distribute ® over O]
(cI (9 111) O (cI ® Gus(I,J))

[2.2. (6); premiss 111 0 Gus(I,J) = U]
Gus(I,J).

Now we obtain the interpretation gw(J) as the least fixpoint fix(Jgw), where JgW : I -) I is
defined by

9

<-*

t-->

<-*

<=,

4--

#*

_

Jgw(I) = J(I) O+ -c(+I 4 fix(W(I,J))).

In order to show gw(J) = wf(J) we need

5.5. Lemma L5 Jwf(I) Jwf(I) = Jgw(J) < Jwf(Jwf(I))
Proof: Assume L<_ Jwf(I). The inequality follows directly from the monotonicity of Jwf, so we
look at the equality. We use the abbreviations G = Gus(I,J), F = fix(W(I,J)). First we observe

(*)

Now
Jgw(I)

G<_c+Ia
G0+I=U
4--

GO J(I) = U and +I S J(I)
[lemma 4.5.(iii); +Jwf(I) = J(I)]

true and I 5 Jwf(I)

-1:5 -,G
[-Jwf(I) = -G and 2.2. (7): A!-< B

I S Jwf(I).
+A <_ +B and -A <_ -B]

J(I) O+ -,c(+I O+ F)
J(I) $ -ic(+I $ c(I (@ G))
J(I) O+ -(c+I O (ccI O+ G))
J(I) O+ -,(c+I O ccl) O+ -1(c+I O G)

= J(I) O+ -,c(+I (D cI) O+ -,G
= J(I) O+ -G

Jwf(I)

5.6. Theorem wf(J) = gw(J).
Proof: It suffices to show

V n (Jwf)n(U) = (Jgw)n(U)

[definition of J9w]
[lemma 5.3]
[2.2. (3),(5),(8); GE I+]
[distribute ® over O+]
[by (*)]
[by (**) and -lc(+IO+cI)<_ -I
using truth tables]
[definition of Jwf]

and this follows with induction, using the previous lemma for the induction step (loaded with
the condition (Jwf)n(U) < (Jwf)n+1(U)); the ground case is trivial.

6. Conclusion

In this paper we presented an abstract mathematical framework in which we proved two
different definitions of the wellfounded model of propositional general logic programs to be
equal, the second one leading to a quadratic-time algorithm. The main notions used are
translated back in a style more common in the literature on logic programming.
At the moment, we apply this framework in the logical characterization of dependency-directed
backtracking in reason maintenance systems, using the correspondence between propositional
general logic programs and reason maintenance systems pointed out by Elkan in [E89].

10

=*

and

<-= <-*

=
=
=
=

=

References

[E89] Ch. Elkan, Logical Characterizations of Nonmonotonic TMSs, in: Mathematical
Foundations of Computer Science 1989, A. Kreczmar and G. Mirkowska (eds.),
Springer-Verlag, pp. 218-224.

[GRS88] A. van Gelder, K. Ross, J. Schlipf, Unfounded Sets and Well-Founded Semantics
for General Logic Programs, in: Proceedings of the Seventh ACM Symposium on
Principles of Database Systems, 1988, pp. 221-230.

[GL88] M. Gelfond, V. Lifschitz, The Stable Model Semantics For Logic Programming,
in: Fifth International Conference Symposium on Logic Programming, R.
Kowalski and K. Bowen (eds.), Seattle, 1988, pp. 1070-1080.

[G82] J. Goodwin, An Improved Algorithm for Non-Monotonic Dependency Net
Update, Report LITH-MAT-R-82-83, Linkoeping University 1982.

[J91] C.M. Jonker, On the Semantics of Conflict Resolution in Truth Maintenance
Systems, Logic Group Preprint Series, No. 65, March 1991, Department of
Philosophy, University of Utrecht.

[L87] J. W. Lloyd, Foundations of Logic Programming, Springer-Verlag (2nd edition),
1987.

[PP90] H. Przymusinska, T. Przymusinski, Semantic Issues in Deductive Databases and
Logic Programs, in: Formal Techniques in Artificial Intelligence, A Sourcebook,
R. B. Banerji (ed.), Elsevier, Amsterdam, 1990, pp. 321-367.

[P89] T. Przymusinski, Every logic program has a natural stratification and an iterated
least fixed point model, in: Eighth ACM Symposium on Principles of Database
Systems, 1989, pp. 11 - 21.

[P90] T. Przymusinski, Well-Founded Semantics Coincides with Three-Valued Stable
Semantics, Fundamenta Informatica XIII (4), 1990, pp. 445-463.

[W90] C. Witteveen, Partial Semantics for Truth Maintenance, in: Logics in Al, J.W. van
Eyk (ed.), Lecture Notes in Artificial Intelligence, Springer-Verlag, 1990.

11

For the sake of completeness, we list some related definitions and results.

Definition
cl:J -J
cl(J)(I) = fix(kl'.J(I')(DI).

Facts
i) I ® J(cl(J)(I)) <_ cl(J)(I);

ii) if I O+ J(I') <_ I' then cl(J)(I) <_ It.

Definition

J+ -4 J+
J# = c(J*).

Lemma j(S)#(I) = N - j(S)*(I) = {c I V ((X&- 3-c)E S I(a&- 3)>_f }.

Lemma
i) J* is antimonotonic, J# is monotonic.
ii) J## > J.
iii) J### = J#.

Proof: i) If I < I', then

so (monotonicity of J and

(@

Since c is antimonotonic on {u,t), we now obtain 0(1) <_ J#(I').
ii) J##(I) = c(O{c(0{J(I") I I" C> I'}) 11, C_> I})

={cc((@ {J(I") I I" G_I'}) 1I'C_ I}
_ { { J(I") I I" c>_ I' } I I' c>_ 1)

>_ J(I)

Lemma j(S)##(I) = {c I Vl'c>_I 3((X&~(3-4c)E S I'((X&--(3)St}
= {c I WE (Ker(I)- {u,t,f}) 3((x&-J3-4c)E S (I©f)((x&- 3)<_t).

Definition
cons : I x J
cons(I,J) I (D J*(I) E Ic.

Facts i) If cons(I,J) and I ' c_ I then I O J(I') (=- Ic;
ii) cons(I,J) = cons(I,Jn);
iii) cons(I,J) = cons(I,cl(J));
iv) cons(I,J) cl(J)(I) E Ic.

12

J#.

C>_ C>_

0 O

t--*

=>

Lemma Let A <_ +uI. Then

unf(A,I,j(S)) VCE N S (A(c) = t I(a&~(3) = f or a n aA f6)

Proof: Assuming A <_ +ul, we have

unf(A,I,j(S)) a A ® j(S)*(I O+ -,A) = 0
A©0{j(S)(I')II' _IO-,A0

etc.

13

(--* =*

t

Logic Group Preprint Series
Department of Philosophy, University of Utrecht

Heidelberglaan 8, 3584 CS Utrecht
The Netherlands

1 C.P.J. Koymans, J.L.M. Vrancken, Extending Process Algebra with the empty process, September 1985

2 J.A. Bergstra, A process creation mechanism in Process Algebra, September 1985

3 J.A. Bergstra, Put and get, primitives for synchronous unreliable message passing, October 1985
4 A. Visser, Evaluation, provably deductive equivalence in Heyting's arithmetic of substitution instances of

propositional formulas, November 1985

5 G.R. Renardel de Lavalette, Interpolation in a fragment of intuitionistic propositional logic, January 1986
5 C.P.J. Koymans, J.C. Mulder, A modular approach to protocol verification using Process Algebra, April

1986

7 D. van Dalen, F.J. de Vries, Intuitionistic free abelian groups, April 1986
8 F. Voorbraak, A simplification of the completeness proofs for Guaspari and Solovay's R, May 1986

9 H.B.M. Jonkers, C.P.J. Koymans & G.R. Renardel de Lavalette, A semantic framework for the COLD-
family of languages, May 1986

10 G.R. Renardel de Lavalette, Strictheidsanalyse, May 1986

11 A. Visser, Kunnen wij elke machine verslaan? Beschouwingen- rondom Lucas' argument, July 1986
12 E.C.W. Krabbe, Naess's dichotomy of tenability and relevance, June 1986
13 H. van Ditmarsch, Abstractie in wiskunde, expertsystemen en argumentatie, Augustus 1986

14 A. Visser, Peano's Smart Children, a provability logical study of systems with built-in consistency ,
October 1986

15 G.R. Renardel de Lavalette, Interpolation in natural fragments of intuitionistic propositional logic, October
1986

16 J.A. Bergstra, Module Algebra for relational specifications, November 1986
17 F.P.J.M. Voorbraak, Tensed Intuitionistic Logic, January 1987

18 J.A. Bergstra, J. Tiuryn, Process Algebra semantics for queues, January 1987
19 F.J. de Vries, A functional program for the fast Fourier transform, March 1987
20 A. Visser, A course in bimodal provability logic, May 1987

21 F.P.J.M. Voorbraak, The logic of actual obligation, an alternative approach to deontic logic, May 1987
22 E.C.W. Krabbe, Creative reasoning informal discussion, June 1987
23 F.J. de Vries, A functional program for Gaussian elimination, September 1987

24 G.R. Renardel de Lavalette, Interpolation in fragments of intuitionistic propositional logic, October 1987
(revised version of no. 15)

25 F.J. de Vries, Applications of constructive logic to sheaf constructions in toposes, October 1987
26 F.P.J.M. Voorbraak, Redeneren met onzekerheid in expertsystemen, November 1987

27 P.H. Rodenburg, D.J. Hoekzema, Specification of the fast Fourier transform algorithm as a term rewriting
system, December 1987

28 D. van Dalen, The war of the frogs and the mice, or the crisis of the Mathematische Annalen, December
1987

29 A. Visser, Preliminary Notes on Interpretability Logic, January 1988

30 D.J. Hoekzema, P.H. Rodenburg, Gauf3 elimination as a term rewriting system, January 1988

31 C. Smorynski, Hilbert's Programme, January 1988
32 G.R. Renardel de Lavalette, Modularisation, Parameterisation, Interpolation, January 1988

33 G.R. Renardel de Lavalette, Strictness analysis for POLYREC, a language with polymorphic and recursive

types, March 1988

34 A. Visser, A Descending Hierarchy of Reflection Principles, April 1988

35 F.P.J.M. Voorbraak, A computationally efficient approximation of Dempster-Shafer theory, April 1988

36 C. Smorynski, Arithmetic Analogues of McAloon's Unique Rosser Sentences, April 1988

37 P.H. Rodenburg, F.J. van der Linden, Manufacturing a cartesian closed category with exactly two objects,
May 1988

38 P.H. Rodenburg, J.L.M.Vrancken, Parallel object-oriented term rewriting : The Booleans, July 198°8

39 D. de Jongh, L. Hendriks, G.R. Renardel de Lavalette, Computations in fragments of intuitionistic
propositional logic, July 1988

40 A. Visser, Interpretability Logic, September 1988
41 M. Doorman, The existence property in the presence of function symbols, October 1988
42 F. Voorbraak, On the justification of Dempster's rule of combination, December 1988
43 A. Visser, An inside view of EXP, or: The closed fragment of the provability logic of IAp+S2l, February

1989

44 D.H.J. de Jongh & A. Visser, Explicit Fixed Points in Interpretability Logic, March 1989
45 S. van Denneheuvel & G.R. Renardel de Lavalette, Normalisation of database expressions involving

calculations, March 1989

46 M.F.J. Drossaers, A Perceptron Network Theorem Prover for the Propositional Calculus, July 1989
47 A. Visser, The Formalization of Interpretability, August 1989
48 J.L.M. Vrancken, Parallel Object Oriented Term Rewriting : a first implementation in Pool2, September

1989

49 G.R. Renardel de Lavalette, Choice in applicative theories, September 1989
50 C.P.J. Koymans & G.R. Renardel de Lavalette, Inductive definitions in COLD-K, September 1989
51 F. Voorbraak, Conditionals, probability, and belief revision (preliminary version), October 1989
52 A. Visser, On the Z1-Conservativity of ?,-Completeness, October 1989
53 G.R. Renardel de Lavalette, Counterexamples in applicative theories with choice, January 1990
54 D. van Dalen, L.E.J. Brouwer. Wiskundige en Mysticus, June 1990

55 F. Voorbraak, The logic of objective knowledge and rational belief, September 1990
56 J.L.M. Vrancken, Reflections on Parallel and Functional Languages, September 1990
57 A. Visser, An inside view of EXP, or: The closed fragment of the provability logic of IAp+S2j, revised

version with new appendices, October 1990

58 S. van Denneheuvel, K. Kwast, G.R. Renardel de Lavalette, E. Spaan, Query optimization using rewrite
rules, October 1990

59 G.R. Renardel de Lavalette, Strictness analysis via abstract interpretation for recursively defined types,
October 1990

60 C.F.M. Vermeulen, Sequence Semantics for Dynamic Predicate Logic, January 1991
61 M.B. Kalsbeek, Towards the Interpretability Logic of IAp+EXP, January 1991.

62 D. van Dalen, I<R, Some Intuitionistic Elementary Equivalences, February 199 1.

63 M.-Bezem, Strong termination of Logic Programs, March 199 1.

64 A. Visser, The Unprovability of Small Inconsistency, March 1991.

65 C.M. Jonker, On the Semantics of Conflict Resolution in Truth Maintenance Systems, March 1991.
66 F. Voorbraak, A Preferential Model Semantics for Default Logic, July 199 1.
67 M. Kracht, Splittings and the finite model property, October 1991.

68 M. Bezem, Impredicative recursion: terms depending on order types (extended abstract), November 1991.

69 E. Barendsen, M. Bezem, Bar recursion versus polymorphism (extended abstract), December 1991.

70 C.F.M. Vermeulen, Merging without Mystery, December 199 1.
71 F. Voorbraak, Generalized Kripke models for epistemic logic, December 1991.

72 W. Veldman, M. Bezem, Ramsey's theorem and the pigeonhole principle in intu-itionistic mathematics,
January 1992.

73 M. Kracht, Prefinitely axiomatizable modal and intermediate logics, January 1992.
74 C. M. Jonker, G. R. Renardel de Lavalette, A tractable algorithm for the wellfounded model, Februari

1992.

