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Abstract

In the area of general logic programming (negated atoms allowed in the bodies of rules) and reason

maintenance systems, the wellfounded model (first defined by Van Gelder, Ross and Schlipf in

1988) is generally considered to be the declarative semantics of the program. In this paper we
present the concise mathematical development of a quadratic-time algorithm for the wellfounded

model of propositional general logic programs. This algorithm has essentially been developed by

Witteveen in 1990, based on ideas and material by Goodwin (1982).

1. Introduction

For logic programs without negation the declarative semantics is clear: only those propositions
which have to be true are true, anything else is false. This is the minimal model semantics.
Since these programs have only limited expressive power, extending the language of logic
programs is useful. Logic programs where negated atoms in the bodies of rules are allowed, are
called general logic programs (see e.g. [L87]). The minimal model semantics is not acceptable
here, since the truth of a proposition may depend upon the falsity of others. The principle of
negation as failure is used to obtain the falsity of atoms.
Several semantics have been proposed for general logic programs (see [PP90], [J91]),
culminating in the stable ([GL88]) and the wellfounded ([GRS88]) semantics. The stable
semantics in [GL88] was originally a. two-valued semantics (truth values t and f), but it had the
drawback that it was not universal (not all programs have a two-valued stable model).
Therefore, this semantics was generalized to a three-valued stable semantics (see [PP90]): the
third truth value is u (undefined or unknown). The stable semantics still has two more
drawbacks:
- it is not unique (some programs have more than one stable model);
- finding a stable model is NP-hard (see [E89]).
The wellfounded semantics is unique and universal (and in general three-valued). If, moreover,
the wellfounded model for a particular program is total (i.e. uses only the values t and f), then
this model is also the unique two-valued stable model ([GRS88]). The analogy between the
stable and the wellfounded semantics carries even further: the wellfounded model is the least
three-valued stable model (see [P90], [W90]). Least here refers to the least amount of
information, based on the truth value ordering t > u < f.
Informally, the difference between the stable and the wellfounded semantics can be described as
follows. In a stable model, there is in general not a specific reason for an atom to be false; in the
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wellfounded model, however, an atom is only false if there can never be a reason to make it
true. This is the way negation as failure works in the wellfounded model. In both models, an
atom is only true if there is a reason for it.
We give an example, based on the general logic program

-a -*b
-b -*a

The stable models are (a- t, b H f 1, (al- f, b H t j and { a,b H- u 1; the last model is also
the wellfounded model.

The definition of the wellfounded model (see section 4) is in terms of a fixpoint of a monotonic
operator which is defined using a union of subsets of the collection of atoms, called the greatest
unfounded set (GUS). As a consequence, the naive implementation of the definition leads to an
algorithm with exponential time complexity (given the size of the program), since all subsets
have to be tested for inclusion in GUS. A slightly less naive approach - trying to determine
membership of GUS pointwise - unfortunately does not work.
In [W90] Witteveen presents a quadratic-time algorithm for the wellfounded model. His work
is based on an algorithm by Goodwin (see [G82]) in which the notion of wellfounded model is
implicitly present (six years before the definition in [GRS88]), albeit restricted to the
propositional case (as is Witteveen's algorithm). Witteveen proves that his algorithm yields the
minimal three-valued stable model; T. Przymusinski proved in [P90] this model to be equal to
his version of the wellfounded model, stating the equivalence to the original definition in
[GRS88] without proof in [P89, Theorem 3.2]. [J91] contains our direct, but rather
complicated proof that Witteveen's algorithm yields the wellfounded model. The present paper
contains a more polished proof, based on an abstract formulation of the concepts involved.

2. Preliminaries

In this section we introduce our notation. The main orderd sets to be used here are presented in
a table; explanation follows in the Remarks.

symbol description definition variables ordering

N atoms (some finite set of atoms) a,b,c trivial
T truth values {u,t,f,o} x,y,z u < t,f < o
I interpretations N -* T I inherited
J justifications { J : I -) I I J monotonic } J inherited
B clause bodies p(Nx -N) a &-(3 c
C clauses B x N a&- J3 -4 c inherited
C S clause sets (C) S c
MCS minimal clause sets d'Ji(c) S (see below)

2.1 Remarks
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1. X x Y and X -* Y inherit their order from X and Y in the usual way:
for z,z' E XxY, z = <x,y>, z' = <x',y'> we have z <_ z' iff (x <_ x' and y <_ y');
for f,g r= X --* Y we have f<_ g iff VxE X(fx <_ gx).

2. For X an ondered set, p (X) is the collection of al subsets of incomparable elements of X,
i.e. pi(X) _ {Y c X I b'yy'E Y(y<_y' -3 y=y')}. The ordering on pi(X) is defined by

A <_ B iff VxE A aye B (x<_y).

3. We write --N for { -a I a E NJ. p,q range over elements of Nu -N.

4. The names of the truth values abbreviate undefined, true, false, overdefined. In fact, taking
only the consistent truth values t, f, u would suffice; o is only added for reasons of symmetry
and elegance, e.g. to make O (sup) and O (inf) in 2.2 total.

5. For the purely mathematical part of the story only N, T, I, J would suffice. The other sets
are introduced in order to formulate matters in the usual style of logic programming involving
clauses. E.g. the elements of C are assumed to represent clauses directly, which is expressed
by the choice of variables ranging over arbitrary elements (column 3).

2.2 Additional definitions

We have the following unary operations on T:

x -,x cx

u u t u u u t u
t f u t t u t u
f t u t u f t u
o o u t t f t u

As binary operations on T we have 4 (inf), 4 (sup) and & (logical and). O (inf) and O+
(sup) are defined as usual; & is defined as the unique symmetric extension of conjunction on
{t,f} over which O and (D distribute, i.e.

(xO+y)&z = (x&z)O+(y&z)
(xOy)&z = (x&z)O(y&z).

O, O+ and & are also used as prefix operators on sets of truth values, in the usual way, e.g.
& { x,y,z } = x&y&z.

All these operations are lifted to I as usual: e.g. (--iI)a = --,(Ia) for aE N.
We put Tc = {t,f,u} (the consistent values) and T+ {t,u} (the positive values).
We list some properties:

(1) +-,x = -,-x
(2) x=+x®-x
(3) c(x O+ y) = cx O cy
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(4) Ixl =ccx
(5) IxO+yl = IxI $ lyl

(6) x©cx=lxlOcx=u
(7) x _< y (+x <_ +y and -x <_ -y)

If, moreover, x,y E' T+, then

(8) Ixl = x

(9) x__<y x0cy=u
(10) ccx = x
(11) xO+cx=t

(1) - (11) can all be lifted in an obvious way to interpretations, reading I for x, I' for y, T
for t and U for u. We also put

Ic=N -* Tc
I+N --- ) T+
J+ = J n (I -> I+)

I is consistent with I' iff I$I'E Ic; I is a consistent extension of I (I c>_ I') iff I E Ic and I ? I.
For I,I'E Ic we have

(12) IO+I'E Ic I® U.

We shall use the fixpoint operator

fix J -4 I
fix(J) = {Jn(ka.u) I n r= co} (the least fixpoint of J)

with the properties

(13) J(fix(J)) = fix(J);
(14) if J(I) <_ I then fix(J) <_ I.

Here we used that N is finite, so the fixpoint of monotonic J is reached in finitely many steps.

3. Some isomorphisms

It is evident that I and B are isomorphic, by t : B -* I and a : I -4 B defined by

t((x&-f3)(x) = @Qt I a (=- a} u {f I bE (3})
6(I) = ai &-Dj where

al = [x I I(x) >_ t j
Qi={xII(x) _ f}.

With this isomorphism in mind, we introduce the abbreviation

4
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I-4 c =def aI&-(31-4c.

By appropriate restrictions of t and a, I+ andp (N) are isomorphic. We let A range over
elements of I+, sometimes considered as subsets of N.

Now we shall show that J+ and MCS are isomorphic. Define j : CS -4 J+ by

j(S)(I)c = t if 3I'SI- (I'-ac E S)
= u otherwise.

It is clear that j is monotonic: if S <_ S' and j(S)(I)c = t then also j(S')(I)c = t; this holds for
all I E I and c e N, so j(S) <_ j(S').
j has a right inverse, for e.g.

if S = {I - c I J(I)c = t} then j(S) = J

but this is in some sense not optimal: S is in general not minimal. But we do have

3.1. Lemma j is an isomorphism between J+ and MCS.
Proof: Define cs : J+ -a MCS by:

cs(J) &`d-I'<IJ(I')c=u}

We claim:
1. cs(J) E MCS
2. J = j(cs(J)) for all JEJ+
3. S = cs(j(S)) for all S E MCS
4. J_< J' cs(J) <_ cs(J')
This is proved as follows:
1. Directly from the definition of cs and - MCS.
2. This follows from VIc (J(I)c. = t a 3I'SI (J(I')c = t and VI"<I' J(I")c = u)) and this is
true. To see this, use (*): given I, there are only finitely many I' <_ I.
3. Using S E MCS, this comes down to VIc (I-c E S (3I':5I (I'--n E S) and VI"<I
(I"-ac o S))), which follows with (*).
4. Analogously.

We introduce a validity relation. First we extend I : N --> T to I : B ---> T by

I(a&-f3) = &{Ip I pE a&-f3}

Now we define

: IC X (B u C u CS u I u J+), defined by
I
I

a&- p
a&-[3 -4 c

iff 1((X&- f 3) ?t
iff (I (X&- 3= Ic=t)

_

<-*

t-->

=
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I S iff `d((X&-P -4 c)E S (I I= (X&-l3 - c)
I I' iff I 6(I')
ICJ iff I cs(J)

3.2. Lemma
i) If I,I' E Ic then I I' iff I'<_ I
ii) If I E Ic, J E J+, then I J iff J(I) <_ I
The proof of this lemma is easy and left to the reader.

A consequence of (ii) is: fix(J) is the least interpretation satisfying J, i.e. fix(J) = J, and if
b-- J then fix(J) <_ I.

Using the isomorphisms above, we define the immediate consequence of interpretation I with
respect to the clause set S by

GO(S)I)={c I I= a&-3 for some a&-(3-4 c in S}.

4. Negation as failure via unfounded sets

As has been mentioned in the Introduction, the wellfounded semantics embodies negation as
failure. Failure is captured by unfounded subsets of N, (modulo an interpretation I and a
justification J).

First we define J*: it maps a positive interpretation I E I+ to the collection of all immediate J-
consequences of consistent extensions of I.

4. 1. Definition

. J+ -4 J+
J*(I) = EB {J(I') I I' c>_ I}.

It is clear that J* is antimonotonic, for if I <_ I', then {I" 1 I" c>_ I} {I" I I" c>_ I'), so
(monotonicity of J and ED) ® { J(I") I I" c_ 1) ® { J(I") I I" c_ I').
Translating this to clauses we get:

G(j(S)*I) = {c I for some (x&-D---> c in S we have t}.

4.2. Definition (unfoundedness)
unf: I+xIxJ+
unf(A,I,J) -,A O+ J*(I (D -.A) E Ic.

In words: -,A is consistent with all immediate J-consequences of conservative extensions of
I+O-,A. Formulated in terms of clauses:

`dc A b'a&~f3-4 c E S ( Ana # 0 or -a$Io Ic or an(3# 0 or I((X&~(3)>_ f ).

So, assuming
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-,A 4 I E Ic(OK if Ac (c I Ic = u}) and
`da&-13--* c E S (an(3 # 0),

we get the original definition (see [GRS88], [J91]):

`dcE AVa&-f3-4 c E S (An(x # 0 or I(a&-{3)>_ f ).

Definition 4.2 only gives a way to check whether a set is unfounded, this check involves the
justification (J) and takes linear time in the size of the program (see [GRS88}). There is
however not a constructive definition of unfounded sets; i.e. no way is given how an
unfounded set can be found.

4.3. Lemma
i) unf is monotonic in its second argument;

ii) in its first argument, unf is preserved under O+, i.e.
VAE X unf(A,I,J) unf(OX,I,J) (X c I+).

Proof:
(i) Let I _< I' and assume unf(A,I,J), i.e. A 4 J* (I O A) = U; by I <_ I' and the
antimonotonicity of J* we have J*(I O+ -,A) >_ J*(I' © -.-,A), so A ® J*(I' OE -,A) = U, i.e.
unf(A,I',J).
(ii) unf((@X,I,J)

a [definition of unf]
OX 0 J*(I O+ -OO X) = U

[property of 0]
VAEX A©J*(Im-DX)=U

[4.4: J* is antimonotonic]
VAE X A 0 J*(I O+ --,A) = U

[definition of unf]
VAE X unf(A,I,J).

4.4. Definition (greatest unfounded subset)
Gus:IxJ+--jI+
Gus(I,J) = 0 { AE I+ I unf(A,I,J) }

Since definition 4.2 is not constructive, neither is this definition for Gus. The naive
implementation of the definition leads to an algorithm with exponential time complexity (given
the size of the program), since all subsets of N have to be tested for membership, as pointwise
determination of membership of Gus is impossible.

4.5. Lemma
i) Gus is monotonic in its first argument;

ii) unf(Gus(I,J),I,J), i.e. Gus(I,J) 4 J*(I O+ -,Gus(I,J)) = U;
iii) J(I) O Gus(I,J) = U
Proof: (i) follows directly from 4.7.(i).
(ii) Follows from 4.7.(ii) and the definition of Gus.
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(iii) J(I) A Gus(I) = J(I) ©O{AE I+ 1 A O J*(I $ -,A) = U} [definition of Gus and unfl
= Q+ { J(I) O A I A (9 J* (I $ -,A) = U) [® distributes over (D]
= U [J(I)<_ J(I$ -,A) <_ J*(I(D -,A)]

Now we can define the wellfounded model wf(J) of J as the least fixpoint of the operator
JWf:I-4I
JWf(I) = J(I) O+ -iGus(I,J)

Now wf(J) = fix(JWf) is the smallest I satisfying
+I = J(I) and -I = Gus(I,J);

this last property comes down to
unf(A,I,J) = --,A <_ I,

i.e. if A # 0 and A <_ uI then there is a consistent extension I' of Im --,A and an A with Aa =
J(I)a = t, so I cannot be extended with -,A.

5. A tractable approach

When trying to find an efficient algorithm for wf(J), one hits upon the problem of computing
Gus(I,J). Direct implementation of the definition of Gus leads to exponential-time behavior: all
subsets of N (coded as elements A of I+) have to be tested for unf(A,I,J). As unf is not
antimonotonic in its first argument (i.e. we do not have unf(A,I,J) and A'<A unf(A',I,J)), it
is not possible to define Gus(I,J) pointwise by {a I unf(t{a},I,J)}, which would have resulted
in a linear-time algorithm for Gus.

Witteveen presents in [W90] a linear-time algorithm for Gus(I,J) which is based on ideas by
Goodwin ([G82]). It computes the complement of Gus as the least fixpoint of a monotonic
operator which we call W (see 5. 1). Using W, a quadratic-time algorithm is obtained in [W90]
for the computation of wf(J) (see 5.5). In this section, we present our formulation of
Witteveen's approach and derive the necessary properties.-

5.1. Definition
W:IxJ+-*J+
W(I,J)(A) = J*(I O+ -c(I(DA)) 4 cI

In terms of clauses:
cs(W(I,j(S))) {aE (x I Ia=u} -4 c I a&-43-> c E S with Ic=u and I((x&-43)< t).

5.2. Lemma
i) W(I,J): I -4 I+ is monotonic;

ii) W(I,J)(A) <_ A unf(c(I(BA),I,J).
Proof: (i) Follows from the antimonotonicity of J* and c.

=*

t=:
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(ii) W(I,J)(A) S A
[definition of W]

J*(I (D -,c(IOA)) ® cI <_ A
t:-* [2.2. (9)]
J*(I (D -,c(IOA)) ® cI ® cA = Ua [2.2. (3)]
J*(I O -,c(I(DA)) ® c(I©A) = U

[definition of unf]
unf(c(I(DA),I,J).

5.3. Lemma fix(W(I,J)) = c(I (D Gus(I,J)).
Proof: First we show >_, then <_. We write F for fix(W(I,J)), G for Gus(I,J).
>: F__>c(I©G)

[2.2. (3),(9)]
G _ c(IED F)

[definition of Gus]
urif(c(I(DF),I,J)

[lemma 5.2.(ii)]
W(I,J)(F) <_ F
t-* [property of fix]
true.

<_: F<_ c(I (D G)
[property of fix]

W(I,J)(c(I (D G)) <_ c(I ® G)
[lemma 5.2.(ii)]

unf(G,I,J)
a [lemma 4.5.(ii)]
true.

So it seems that Gus(I,J) can be determined via its complement in N. We make this more
precise:

5.4. Corollary 111 0 Gus(I,J) = U = Gus(I,J) = c(I O fix(W(I,J)))
Proof: c(I O+fix(W(I,J)))

[lemma 5.3]
c(I O+ c(I (D Gus(I,J)))

[2.2. (3),(5),(8); Gus(I,J) E I+l
cI ® (111 O+ Gus(I,J))

_ [distribute ® over O]
(cI (9 111) O (cI ® Gus(I,J))

[2.2. (6); premiss 111 0 Gus(I,J) = U]
Gus(I,J).

Now we obtain the interpretation gw(J) as the least fixpoint fix(Jgw), where JgW : I -) I is
defined by

9
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Jgw(I) = J(I) O+ -c(+I 4 fix(W(I,J))).

In order to show gw(J) = wf(J) we need

5.5. Lemma L5 Jwf(I) Jwf(I) = Jgw(J) < Jwf(Jwf(I))
Proof: Assume L<_ Jwf(I). The inequality follows directly from the monotonicity of Jwf, so we
look at the equality. We use the abbreviations G = Gus(I,J), F = fix(W(I,J)). First we observe

(*)

Now
Jgw(I)

G<_c+Ia
G0+I=U
4--

GO J(I) = U and +I S J(I)
[lemma 4.5.(iii); +Jwf(I) = J(I)]

true and I 5 Jwf(I)

-1:5 -,G
[-Jwf(I) = -G and 2.2. (7): A!-< B

I S Jwf(I).
+A <_ +B and -A <_ -B]

J(I) O+ -,c(+I O+ F)
J(I) $ -ic(+I $ c(I (@ G))
J(I) O+ -(c+I O (ccI O+ G))
J(I) O+ -,(c+I O ccl) O+ -1(c+I O G)

= J(I) O+ -,c(+I (D cI) O+ -,G
= J(I) O+ -G

Jwf(I)

5.6. Theorem wf(J) = gw(J).
Proof: It suffices to show

V n (Jwf)n(U) = (Jgw)n(U)

[definition of J9w]
[lemma 5.3]
[2.2. (3),(5),(8); GE I+]
[distribute ® over O+]
[by (*)]
[by (**) and -lc(+IO+cI)<_ -I
using truth tables]
[definition of Jwf]

and this follows with induction, using the previous lemma for the induction step (loaded with
the condition (Jwf)n(U) < (Jwf)n+1(U)); the ground case is trivial.

6. Conclusion

In this paper we presented an abstract mathematical framework in which we proved two
different definitions of the wellfounded model of propositional general logic programs to be
equal, the second one leading to a quadratic-time algorithm. The main notions used are
translated back in a style more common in the literature on logic programming.
At the moment, we apply this framework in the logical characterization of dependency-directed
backtracking in reason maintenance systems, using the correspondence between propositional
general logic programs and reason maintenance systems pointed out by Elkan in [E89].
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For the sake of completeness, we list some related definitions and results.

Definition
cl:J -J
cl(J)(I) = fix(kl'.J(I')(DI).

Facts
i) I ® J(cl(J)(I)) <_ cl(J)(I);

ii) if I O+ J(I') <_ I' then cl(J)(I) <_ It.

Definition

# J+ -4 J+
J# = c(J*).

Lemma j(S)#(I) = N - j(S)*(I) = {c I V ((X&- 3-c)E S I(a&- 3)>_f }.

Lemma
i) J* is antimonotonic, J# is monotonic.
ii) J## > J.
iii) J### = J#.

Proof: i) If I < I', then

so (monotonicity of J and

(@

Since c is antimonotonic on {u,t), we now obtain 0(1) <_ J#(I').
ii) J##(I) = c(O{c(0{J(I") I I" C> I'}) 11, C_> I})

={cc((@ {J(I") I I" G_I'}) 1I'C_ I}
_ { { J(I") I I" c>_ I' } I I' c>_ 1)

>_ J(I)

Lemma j(S)##(I) = {c I Vl'c>_I 3((X&~(3-4c)E S I'((X&--(3)St}
= {c I WE (Ker(I)- {u,t,f}) 3((x&-J3-4c)E S (I©f)((x&- 3)<_t).

Definition
cons : I x J
cons(I,J) I (D J*(I) E Ic.

Facts i) If cons(I,J) and I ' c_ I then I O J(I') (=- Ic;
ii) cons(I,J) = cons(I,Jn);
iii) cons(I,J) = cons(I,cl(J));
iv) cons(I,J) cl(J)(I) E Ic.
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Lemma Let A <_ +uI. Then

unf(A,I,j(S)) VCE N S (A(c) = t I(a&~(3) = f or a n aA f6)

Proof: Assuming A <_ +ul, we have

unf(A,I,j(S)) a A ® j(S)*(I O+ -,A) = 0
A©0{j(S)(I')II' _IO-,A0

etc.
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